Feature Selection Using Adaboost for Face Expression Recognition
نویسندگان
چکیده
We propose a classification technique for face expression recognition using AdaBoost that learns by selecting the relevant global and local appearance features with the most discriminating information. Selectivity reduces the dimensionality of the feature space that in turn results in significant speed up during online classification. We compare our method with another leading margin-based classifier, the Support Vector Machines (SVM) and identify the advantages of using AdaBoost over SVM in this context. We use histograms of Gabor and Gaussian derivative responses as the appearance features. We apply our approach to the face expression recognition problem where local appearances play an important role. Finally, we show that though SVM performs equally well, AdaBoost feature selection provides a final hypothesis model that can easily be visualized and interpreted, which is lacking in the high dimensional support vectors of the SVM.
منابع مشابه
Human Emotional Facial Expression Recognition
An automatic Facial Expression Recognition (FER) model with Adaboost face detector, feature selection based on manifold learning and synergetic prototype based classifier has been proposed. Improved feature selection method and proposed classifier can achieve favorable effectiveness to performance FER in reasonable processing time.
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFace Recognition Based on Multiple Region Features
For face recognition, face feature selection is an important step. Better features should result in better performance. This paper describes a robust face recognition algorithm using multiple face region features selected by the AdaBoost algorithm. In conventional face recognition algorithms, the face region is dealt with as a whole. In this paper we show that dividing a face into a number of s...
متن کاملGabor Feature Selection for Face Recognition Using Improved AdaBoost Learning
Though AdaBoost has been widely used for feature selection and classifier learning, many of the selected features, or weak classifiers, are redundant. By incorporating mutual information into AdaBoost, we propose an improved boosting algorithm in this paper. The proposed method fully examines the redundancy between candidate classifiers and selected classifiers. The classifiers thus selected ar...
متن کاملBoosting Steerable Features for 2D Face Recognition on IV² Database
In this paper, a novel approach for 2D face recognition is proposed, based on local feature extraction through a multi-resolution multi-orientation linear method: Steerable Pyramid (SP) and on a feature selection and classification by means of a non-linear method: Adaboost. Many strategies have been elaborated and tested on IV2 database including challenging variability such as pose, expression...
متن کامل